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Figure 1. Our method transforms 3D trajectories into a plausible human animation. The model requires only an initial pose and any number
of input trajectories for each character in a scene. Generated animations can be composed to create vivid animated scenes.

Abstract

The creation of plausible and controllable 3D human
motion animations is a long-standing problem that requires
a manual intervention of skilled artists. Current machine
learning approaches can semi-automate the process, how-
ever, they are limited in a significant way: they can han-
dle only a single trajectory of the expected motion that
precludes fine-grained control over the output. To miti-
gate that issue, we reformulate the problem of future pose
prediction into pose completion in space and time where
multiple trajectories are represented as poses with miss-
ing joints. We show that such a framework can generalize
to other neural networks designed for future pose predic-
tion. Once trained in this framework, a model is capable of
predicting sequences from any number of trajectories. We
propose a novel transformer-like architecture, TRAJEVAE,
that builds on this idea and provides a versatile framework
for 3D human animation. We demonstrate that TRAJEVAE
offers better accuracy than the trajectory-based reference
approaches and methods that base their predictions on past
poses. We also show that it can predict reasonable future
poses even if provided only with an initial pose.

1. Introduction

Creating realistic human animation is one of the key
components in robotics, game, and movie industries. Typ-
ically when working on an animation, the animator starts
with defining a character’s skeleton. Parts of this skeleton
are manually created and defined to be in a specific rela-
tion such that each joint can influence the position of other
joints. Together, these parts form a kinematic chain. While
these relations are helpful to maintain skeleton movement
constraints, they are not sufficient to create realistic ani-
mation. In fact, the generation of such animations requires
manual key-framing of the joint positions throughout the se-
quence. That becomes quickly an unfeasible task for com-
plex motions.

The procedure can be aided with recent advances in ma-
chine learning. The automation of character animation is
a long-standing problem with multiple solutions proposed,
including those based on neural networks and probabilistic
models [16,27,28,55,56,61]. The main goal of these meth-
ods is to generate sequences of joint positions given some
conditioning information, i.e. control signal. This control
signal can be any partial future information, for example,
the direction of the movement, speed, type of an action be-
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ing performed, coordinates of a particular joint, or any com-
bination of the above [11, 17, 24, 26, 51, 65, 71]. However,
these methods can handle only simple motions of a body,
such as walking, running, or side-stepping, and cannot infer
fine-grained motions of each of the joints. In many cases,
this formulation becomes impractical, if we wanted to sim-
ulate a crowd where characters perform vivid actions such
as jumping, bending, or hand waving.

To solve this issue, we propose a data-driven approach
to train a model to handle a variable number of pieces of
information, trajectories, for human motion generation. A
single trajectory refers to a particular skeleton joint, e.g. el-
bow, and specifies where that joint should be located in each
time step. We can choose whether we want to specify tra-
jectories of a few joints and leave the rest to be generated
by the model or generate a more specific motion by adding
more trajectories. This formulation introduces an unprece-
dentedly flexible framework that encompasses all previous
approaches while offering adjustable control over the gen-
erated motion.

We formulate the problem of predicting future poses
from trajectories as a pose completion problem to achieve
our goal. We trace the inspiration for that formulation to the
evolutionary cognitive skills of humans who are able to hal-
lucinate [32] the rest of a human body out of a few markers
that exhibit a human motion. While a similar formulation
was firstly used in [25], it was applied to a significantly dif-
ferent task of predicting future motions from past frames.
Similarly, [35] predicts missing poses in a sequence where
only some of pose frames are given. However, we notice
that without introducing a structured bias into the training
of these methods, they fail at generating realistic poses even
if we provide several trajectories. Moreover, they are de-
terministic by design at cannot generate multiple, diverse
motions.

Since we cast our problem as structured pose completion,
we leverage recent advancements in stochastic tensor com-
pletion [75] and show the application of that paradigm on a
novel motion generation model which we call TRAJEVAE.
Thanks to our formulation, we achieve a desirable property
that the accuracy of generated motions increases when more
information is provided at the input. At the same time, our
model can predict future poses even if no trajectory is given.
In industrial applications, our method can generate full-
body animations for automatically-tracked joints while nat-
urally handling missing information if some of the joints are
not seen by the model. TRAJEVAE outperforms trajectory-
based baselines and methods based on several past full body
frames in terms of accuracy. We additionally show that our
formulation can be adapted to existing methods targeting
the defined task, thus improving their results.

We summarize our contributions as follows:

• a simple and general training paradigm that enables

controllable generation of future poses from a variable
number of input information pieces,

• TRAJEVAE — the first generative model that predicts
diverse poses from any number of input trajectories,

• empirical study showing that our formulation can be
successfully applied to existing methods for generating
motion from a single trajectory to improve their results
and enable them to use multiple trajectories.

2. Related Works

Deterministic motion prediction In recent years, mul-
tiple methods were proposed for predicting a single fu-
ture motion based on a corresponding past sequence of
poses [2,3,10,12,18,20–22,40,41,45–47,51,53,60] or video
frames with missing poses [16, 30, 33, 47, 52, 72, 73]. Cai et
al. [10] and Aksan et al. [2] use a transformer-like architec-
ture to achieve this goal. Mao et al. [45,46] extend the pose
representation by performing Discrete Cosine Transform
(DCT) [1] on joint coordinates. They additionally applied
Graph Convolutional Networks (GCN) to incorporate the
spatial information relationships between joints. Lebailly et
al. [39] adapted inception modules [59] to handle different
temporal resolutions of the data. Kaufmann et al. [35] uses
a U-Net architecture to complete missing poses in the in-
put tensor. Similar to our approach, Ruiz et al. [25] treats
the motion prediction as a pose completion problem. How-
ever, these consider only randomly incomplete data while
we train our method explicitly to leverage a variable num-
ber of available joint trajectories. While being successful,
these methods are limited to predicting a single future pose
sequence.
Stochastic motion prediction To model the distribution
of possible motions, recent works [4, 23, 25, 31, 35, 38, 43,
63, 67, 70] leverage advances for generative modeling and
build upon models such as Generative Adversarial Net-
works (GANs) [19], Variational Autoencoders (VAEs) [37]
or normalizing flows [54]. These models enable sampling
multiple future pose sequences and to accomplish this, they
are often built as conditional models (CGANs [19] and
CVAEs [37]). Barsoum et al. [6] use Wasserstein GAN [5]
in a sequence-to-sequence framework. To make poses more
realistic, they regularize bone lengths and deviations be-
tween poses in consecutive frames. Walker et al. [63] apply
VAE for the same goal and uses predicted poses to generate
structurally consistent images. Zhang et al. [73] consider
the motion generation given an action label to performed by
the generated character. The authors also consider a trans-
former architecture to be suitable for time sequence model-
ing. While having high generation accuracy, these methods
do not provide fine-grained control over generated outputs.
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Figure 2. Pipeline of our TRAJEVAE architecture trained in the pose completion paradigm. TRAJEVAE completes the sequence of missing
joints and allows us to generate diverse poses from a variable number of input trajectories. During inference, we drop the part responsible
for encoding poses {x}Tt=1.

Stochastic prediction from trajectories Existing meth-
ods [11,15,24,26,51–53,57,71] methods handle a single tra-
jectory often represented as a target pelvis coordinate pro-
jected onto the floor’s plane, or as a tuple of velocities for
each axis. Pavllo et al. [53] encode a control signal in the
form of the desired trajectory. Henter et al. [24] input to the
model a t control signal and past control signals to predict
t + 1 pose. Holden et al. [26] split the motion into phases
and model them with a phase-conditioned neural network.
Yet these approaches are designed for a single trajectory and
cannot generate motions like jumping jacks or hand waving
where multiple trajectories need to be specified.
Image completion As our method draws inspiration for
image completion literature, we briefly summarize recent
advanced in that field.

Image inpainting [7] is a well-known problem in com-
puter vision. We posit that several of the already proposed
approaches [9, 44, 49, 66, 68] can be successfully applied
for pose completion where only a part of the pose is given.
This way, we can leverage principles of these methods to
improve general results. Liu et al. [44] defines a partial
convolution where the image is convolved only over pix-
els that are available in the input. Yu et al. [68] incorporates
generative adversarial networks [19] and an attention mech-
anism to improve overall results. Zheng et al. [75] define a
probabilistic model in the VAE framework that allowed the
authors to generate diverse and realistic image completions.

3. Method
We introduce a novel paradigm of trajectory represen-

tation that enables fine-grained motion control with an ar-
bitrary number of joint trajectories. We show that gener-
ating full-body poses from trajectories can be treated as a
pose completion problem. Then, we introduce TRAJEVAE
that builds on the paradigm and allows us to sample mul-
tiple, diverse poses which follow the conditioning trajecto-
ries. Throughout the whole paper, we parametrize trajec-
tories and poses in 3D global coordinates. We show the

overview of our model in Fig. 2.

3.1. Handling multiple trajectories

We formulate the problem of predicting poses that follow
a particular trajectory as a pose completion problem. We de-
note a trajectory Y = {y1, . . . ,yT } of length T as vectors
with k ≤ J known joint positions from a corresponding
pose sequence X = {x1, . . . ,xT }, where xt,yt ∈ R3J .
The trajectories of the unknown J − k joints in Y are set
to 0. The goal of the pose completion task is to predict X
given Y.

To mimic real-life scenarios, at training-time we ran-
domly mask-out some of the joint the input pose sequence.
In this way, we reproduce the typical use cases such as oc-
clusions or omissions of the animation artist. At each time
step, we sample a matrix M ∈ {0, 1}T×3J that masks the
same joints across T time steps. Therefore, trajectories are
obtained as Y = X�M where� is the element-wise mul-
tiplication.

We motivate the introduced paradigm as follows. Firstly,
masking the poses in a principled, structured way intro-
duces a structural bias into the model. The bias aids the
model in learning particular distribution of poses. Such a
model can outperform previous approaches such as [35] by
a significant margin even for a single trajectory. Secondly,
thanks to that bias and in contrast to all related works that
are limited to a single trajectory, our method allows the user
to select how many trajectories are supplied to the network.
As we show in the experiments, this paradigm enables a
neural network model to handle a varying number of input
trajectories.

3.2. Pose completion with a neural network

To show the applicability of the introduced framework,
we design TRAJEVAE — a Conditional Variational Au-
toencoder (CVAE) [37] with a transformer-like architecture
[62, 64], and a learnable prior distribution. The transformer
architecture allows us to generate a sequence of poses in
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parallel while the learnable prior increases the sampling di-
versity and plausibility. Our model is an autoencoder with
two encoders Epose, Etraj and a single decoder D, where
most of the blocks are shared. Epose produces parame-
ters of the posterior distribution qpose from the input poses
X. These parameters are optimized to match the trajectory
prior distribution ptraj parametrized by Etraj. Since we
train the model to match distributions qpose and ptraj, the
decoder D produces results that are similar for both Etraj
and Epose. During inference, we do not have access to the
ground truth of a complete pose sequence and hence we
drop Epose that is responsible for encoding poses during
training.
Encoding poses and trajectories To take advantage of
the similarity between representations of poses and trajec-
tories, parameters of Etraj and Epose are shared unless
stated otherwise. We firstly encode the 3D coordinates of
{yt}Tt=1 and {xt}Tt=1 with Etraj or Epose to get {ĥt}Tt=1

and {h̃t}Tt=1 respectively. We concatenate them with the
initial pose representation h0 obtained from a separate neu-
ral network. Ĥ = {[ĥt;h0]}Tt=1 for trajectories and H̃ =

{[h̃t;h0]}Tt=1 for poses are passed to two self-attention
layers [62]. Then, we apply the Discrete Cosine Trans-
form (DCT) for each feature in all vectors independently,
and obtain vectors DCT(Ĥ) ∈ RT×(|ĥ|+|h0|),DCT(H̃) ∈
RT×(|h̃|+|h0|) in the frequency domain. As shown in [74],
most the variability of in the pose distribution concentrates
in early components of DCT. Hence, sampling from the nor-
mal distribution in frequency domain increases diversity of
generated poses.

Up to this point, all parameters for processing trajec-
tories Y and poses X are shared to use the fact that tra-
jectories represent masked future poses. We then split the
pipeline into two unshared parts — one for trajectories and
one for poses — that are composed of transformer-like en-
coders that facilitate information sharing between the latent
codes. The final multilayer perceptrons produce parameters(
{µ̂}Tt=1, {σ̂}Tt=1

)
of a normal distribution for trajectories,

and
(
{µ̃}Tt=1, {σ̃}Tt=1

)
for poses.

Learnable prior Constraining the latent space to a stan-
dard normal distribution N (0, I) as in VAEs is too restric-
tive and impedes the diversity of generated samples signif-
icantly. To overcome the problem and to provide a more
flexible distribution, we make the prior learnable [13, 75]
and define it as ptraj(ẑt|y1, . . . ,yT ). During training, we
match the posterior distribution qpose(z̃t|x1, . . . ,xT ) by
optimizing the Kullback-Leibler divergence:

−KL(qpose(z̃t|x1, . . . ,xT )||ptraj(ẑt|y1, . . . ,yT )),

where ẑt ∼ N (µ̂t, σ̂t) and z̃t ∼ N (µ̃t, σ̃t) are samples
from the prior and posterior distributions respectively.
Decoding poses We transform latent vectors of the poses

{z̃}Tt=1 during training and trajectory latent vectors {ẑ}Tt=1

during inference into the original time domain {w}Tt=1 with
Inverse Discrete Cosine Transform (IDCT) [1]. We addi-
tionally encode the initial pose with an MLP to obtain w0 as
we found it improves overall results. A set of concatenated
vectors {[wt;w0]}Tt=1 is decoded with a self-attention de-
coder. The final fully connected layers predict offsets ôt of
the reconstructed pose x̂t−1 from the time step t − 1. Fi-
nally, the reconstructed pose x̂t in the time step t is obtained
as:

x̂t =

t∑

τ=1

x̂τ−1 + ôτ , x̂0 = x0 (1)

where x0 is the initial pose.
Our approach decodes offsets of joints in step t with re-

spect to the pose t− 1 without the need to access that pose.
Therefore, the offsets can be predicted in parallel, and the
final poses are obtained by a simple aggregation of offsets
and adding them to the initial pose x0. This approach con-
trasts with the current notion of applying fully autoregres-
sive decoders [24,70,74] which suffer from slow inference.
Training We train our TRAJEVAE to accurately recon-
struct poses, while maintaining the posterior distribution
close to the prior. We achieve this by optimizing the fol-
lowing objective [37]:

L = LMSE + LKL, (2)

where LMSE is the reconstruction term expressed as mean
squared error:

LMSE =

T∑

t=1

||x̂t − xt||22 , (3)

and LKL keeps the posterior distribution close to the learn-
able prior by minimizing Kullback-Leibler divergence:

LKL = −
T∑

t=1

βKL(qpose(z̃t|X,Y)||ptraj(ẑt|Y)). (4)

Masking future poses and data augmentation Providing
target poses {x}Tt=1 during training directly leads to over-
fitting and makes the network unable to match the posterior
with the prior. This further degrades the quality of recon-
structed poses during inference. To overcome the problem,
we mask input poses X with the inverse mask M, that was
used to obtain trajectories, as X � (1−M). This way, the
pose encoder Epose is forced to leverage the information
from the prior distribution of trajectories which are struc-
turally complementary to masked future poses.

4. Experiments
We evaluate TRAJEVAE in two scenarios. Firstly, we

evaluate the performance of our method and of several base-
lines when we progressively add conditioning trajectories
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in the input. Secondly, we compare our method with re-
cent methods for a stochastic human generation. We also
perform an ablation study to validate our design decisions.
Datasets All our experiments are based on the Hu-
man3.6m dataset [29]. It consists of 3.6 million video
frames of 11 subjects performing 15 actions. We follow the
evaluation protocol used in [70] and hence we use 17-joint
poses. The training was done on subjects S1, S5, S6, S7,
S8 while subjects S9 and S11 are left for the testing. We
test the baselines and our method by predicting 2 seconds
of future motion.

We represent human poses and trajectories as a set of
joints parametrized as global coordinates. We also normal-
ize each sequence such that the pelvis of the initial pose is
located at the (0, 0, 0) coordinate.
Baselines To show the generality of our approach, we de-
fine baselines that, thanks to our paradigm, enable genera-
tion of high quality human motions for a variable number of
trajectories. We compare TRAJEVAE with two approaches
that are the most similar to ours and also use the principle of
recovering the missing joints: MotionGAN [25] and Motion
Infilling [35]. We show that using both of them out-of-the-
box is not sufficient to produce high quality pose sequences
from trajectories. Note also that these models are designed
to be deterministic and cannot produce diverse motions.

We also compare to a basic CVAE-RNN based on [70]
and an adapted version of MoGlow [24]. MoGlow in its
original version supports only walking, running, and step-
ping motions. The conditioning signal used by the authors
is expressed in terms of axis velocities for the pelvis joint.
In its basic form, MoGlow can handle only a single trajec-
tory to predict the motion. We provide additional imple-
mentation details of these baselines in the supplementary
material.

In the second experiment, we follow the evaluation pro-
tocol of DLow [70] and use its baselines for the Hu-
man3.6M [29] dataset. In contrast to DLow however, our
method requires only a single past frame (the initial pose)
while the evaluation used by the authors assumed 25 past
frames for Human3.6m and it does not allow to control pre-
dicted future motions.
Metrics We evaluate the methods using the diversity and
accuracy metrics defined in [70]. Average Pairwise Dis-
tance (APD) describes the diversity of a set of size K of
motions sampled given the same input trajectory. It is ex-
pressed as the average L2 distance between all pairs of gen-
erated motions 1

K(K−1)
∑K
i=1

∑K
j 6=i ||x̂i − x̂j ||2. Average

Displacement Error (ADE) measures the accuracy of the
reconstructed motion and calculates the averageL2 distance
across all time steps between the ground truth motion and
the motion from a generated set of K motions that is the
closest to the ground truth 1

T minx̂∈X̂
∑T
t=1 ||x̂t − xt||2.

Final Displacement Error (FDE) calculates the L2 dis-

tance between the pose in the last time step of ground truth
motion and the motion from a generated set of K motions
that is the closest to the ground truth minx̂∈X̂ ||x̂T − xT ||2.
Multi-Modal ADE (MMADE) and Multi-Modal FDE
(MMFDE) calculates an average of ADE and FDE respec-
tively between a predicted motion and all samples in a clus-
ter of motion sequences. We group these motions where the
L2 distance between their initial poses differs by less than ε.
Implementation details At the training time, we obtain
masks M ⊃ m ∈ {0, 1}3J by sampling from the Bernoulli
distribution B(pm) with a probability pm. Then, we repli-
cate the m vector T times to create the structured mask
M ∈ {0, 1}T×3J . We set pm = 0.85 so that the network
sees 3 – 4 trajectories on average in the input. We motivate
that number to be a sensible trade-off between the accuracy
and effort of defining trajectories when using TRAJEVAE
in practice.

We train TRAJEVAE and the corresponding baselines
with the Adam optimizer [36] with learning rate set to
0.0001 and multiplied by 0.25 every 80, 000 training steps.
We set β = 0.01 in the KL term, the batch size = 64 and
we train models for 240, 000 steps.

4.1. Qualitative results

Reconstructed sequences To visually examine the pro-
posed method, we generate a set of poses while changing
the number of input trajectories. Fig. 3 shows individual
frames from selected animation sequences (refer to the sup-
plementary material to see full video clips). When more
trajectories are provided, the generated sequence resembles
the ground truth more closely. However, even if no trajec-
tory is provided, TRAJEVAE generates plausible poses. We
achieve this by providing the initial pose to the model dur-
ing the decoding phase. We note that the initial pose heavily
biases the model due to the nature of the dataset.
Diversity vs. number of input trajectories Since
TRAJEVAE allows us to sample latent DCT components
from a learnable prior distribution, we can generate multi-
ple, diverse samples for the same set of conditioning trajec-
tories. We show the last frames of such generated samples
in Fig. 4. When no trajectories are present, the method gen-
erates the most diverse outputs, while retaining the plau-
sibility of poses. As we noticed by examining the gener-
ated sequences, such poses can represent waving, bending,
or dancing-like motions. When four trajectories are given,
generated poses converge towards the ground truth.

Due to the MSE term in Eq. (3), the model is not forced
to exactly reproduce the trajectories, and therefore the re-
sults plateau when we provide more than ten trajectories.
Applying L1 loss instead of L2 mitigates that issue but sig-
nificantly impedes the diversity of generated samples.
Generalization Finally, we empirically show that, in con-
trast to other works on controllable human motion gener-
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Figure 3. By using TRAJEVAE, we can provide more trajectories in the input to create a realistic pose that follows a particular path. Joints
that are not described by a trajectory are completed by our method. Here we show three sequences of motions generated by our method.
The joints that have a corresponding input trajectory are depicted as brown spheres. The top row shows the ground truth sequence. Rows
below show generated sequences when more trajectories are given, in the order: right foot, left foot, right and left hands. Labels refer to
classes in the Human3.6m dataset [29].
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Figure 4. TRAJEVAE allows us to use a variable number of tra-
jectories and sample multiple diverse pose sequences. We show
in each row input trajectories, end poses for 5 sampled sequences,
and the end pose for a sequence decoded from trajectory means
{µ̂}Tt=1. The joints that have a specified trajectory are colored in
brown.

ation, TRAJEVAE can be applied to any set of motions,
e.g. dancing, sitting, waving, and others. As we present
in Fig. 5, TRAJEVAE generalizes to a variety of different
sets of motions that were not handled by previous methods.
We additionally show in the supplementary, that given the
same trajectory but a different initial pose, our method still
generates poses that follow the provided trajectory. It con-
firms that our approach leverages both the initial pose and

GT end pose Trajectories Time

Figure 5. TRAJEVAE is not limited to only walking, running,
or standing, as are other related methods, and can be applied to
any motion type. Each row represents a generated sequence for a
different motion class given specific trajectories. The joints that
have a specified trajectory are colored in brown.

trajectories, and can be used to generate animations beyond
the ones found in the dataset.
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Method k
APD ADE FDE MMADE MMFDE
↑ ↓ ↓ ↓ ↓

TRAJEVAE

0

8.462 0.518 0.678 0.596 0.703
MotionGAN [25] 0.0 1.174 1.274 1.174 1.270
Motion Infilling [35] 0.0 1.203 1.209 1.197 1.207
MoGlow [24] 1.786 0.548 0.776 0.626 0.803
CVAE-RNN 9.579 0.611 0.723 0.639 0.724

TRAJEVAE

1

6.641 0.463 0.602 0.581 0.672
MotionGAN [25] 0.0 0.936 1.120 0.958 1.147
Motion Infilling [35] 0.0 > 104 > 104 > 104 > 104

MoGlow [24] 1.813 0.546 0.773 0.625 0.801
CVAE-RNN 9.498 0.603 0.733 0.647 0.753

TRAJEVAE

2

6.334 0.450 0.581 0.581 0.668
MotionGAN [25] 0.0 0.904 1.131 0.953 1.185
Motion Infilling [35] 0.0 > 104 > 104 > 104 > 104

MoGlow [24] 1.861 0.544 0.768 0.623 0.797
CVAE-RNN 9.496 0.588 0.714 0.642 0.745

TRAJEVAE

3

5.037 0.375 0.488 0.579 0.664
MotionGAN [25] 0.0 0.812 1.063 0.948 1.220
Motion Infilling [35] 0.0 22.727 76.233 22.801 76.326
MoGlow [24] 1.844 0.540 0.766 0.623 0.798
CVAE-RNN 9.309 0.516 0.626 0.614 0.699

TRAJEVAE

4

4.069 0.325 0.428 0.584 0.674
MotionGAN [25] 0.0 0.675 0.919 0.932 1.226
Motion Infilling [35] 0.0 1.067 1.220 1.258 1.468
MoGlow [24] 1.858 0.530 0.750 0.619 0.790
CVAE-RNN 9.242 0.459 0.560 0.602 0.679

Table 1. Influence of the number of trajectories k on the quan-
titative results. Note that both MotionGAN [25] and Motion In-
filling [35] have deterministic architectures and cannot produce
diverse motions. Best results are in bold.

4.2. Quantitative Results

Controlling future motion prediction We evaluate the
quality of generated samples while changing the number
of input trajectories. We first compute the metrics with no
provided trajectories and then progressively increase their
number by adding the following: right foot, left foot, right
hand, and left hand. This order was motivated by the vari-
ance of coordinates of joints they correspond to, i.e., the
joint with highest variance in the dataset was added first.
In each case, we sample K = 50 poses to calculate met-
rics. Results are summarized in Tab. 1. As expected, adding
more trajectories decreases the diversity (APD) of samples
since the pose is restricted to follow a particular path. At the
same time, the accuracy (ADE) of generated samples im-
proves. Our TRAJEVAE obtains the best results in terms of
the reconstruction quality in comparison to other methods.
The higher diversity of CVAE-RNN is caused by its struc-
ture — in contrast to TRAJEVAE, CVAE-RNN encodes the
whole sequence into a single latent code instead of mul-
tiple components. Therefore, two samples from the prior
may have a significantly different structure in the output.
However, such an architecture suffers from pose averaging
where most of the pose frames are the same in a generated
sequence [16,42] which leads to the inferior accuracy of the
reconstructed motions. We hypothesize that Motion Infill-
ing [35] obtains high error on the reconstruction due to two
issues: it is trained with the L1 reconstruction loss (which
also worked detrimentally for TRAJEVAE) and the simple
masking scheme where each coordinate for all joints across
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Figure 6. Providing more trajectories in the input causes that the
reconstruction error (ADE) of the reconstruction decreases gradu-
ally for the cost of the decreased diversity (APD).

Method APD ADE FDE MMADE MMFDE
↑ ↓ ↓ ↓ ↓

TRAJEVAE (k = 0) 8.462 0.518 0.678 0.596 0.703
TRAJEVAE (k = 1) 6.641 0.463 0.602 0.581 0.672
TRAJEVAE (k = 2) 6.334 0.450 0.581 0.581 0.668
TRAJEVAE (k = 3) 5.037 0.375 0.488 0.579 0.664
TRAJEVAE (k = 4) 4.069 0.325 0.428 0.584 0.674

DLow [70] 11.741 0.425 0.518 0.495 0.531
ERD [16] 0.0 0.722 0.969 0.776 0.995
acLSTM [42] 0.0 0.789 1.126 0.849 1.139
Pose-Knows [63] 6.723 0.461 0.560 0.522 0.569
MT-VAE [67] 0.403 0.457 0.595 0.716 0.883
HP-GAN [6] 7.214 0.858 0.867 0.847 0.858
Best-of-Many [8] 6.265 0.448 0.533 0.514 0.544
GMVAE [14] 6.769 0.461 0.555 0.524 0.566
DeLiGAN [22] 6.509 0.483 0.534 0.520 0.545
DSF [69] 9.330 0.493 0.592 0.550 0.599

Table 2. Quantitative results for the Human3.6M dataset when
K = 50 samples are generated. For our method, we assume dif-
ferent scenarios when k = {0, 1, 2, 3, 4} trajectories are provided.
We explicitly delimit DLow [70] and its baselines as these meth-
ods do not use trajectories and predict future poses from 25 past
frames. Best results are in bold.

the sequence is randomly masked out.
In Fig. 6, we show that including more trajectories in the

input improves the reconstruction quality. Notice that in-
cluding too many trajectories plateaus the quality. We con-
clude that it is caused by the randomness in the latent space,
and hence the network is unable to properly encode all the
input trajectories to reconstruct poses accurately. Interest-
ingly, the diversity (APD) is the lowest for ten trajectories
and slightly increases when we add more trajectories. We
argue that this phenomenon may be caused by the order we
use when adding trajectories. Due to the low influence of
the last seven trajectories on the sequence, they do not af-
fect the quality.
Comparison with other methods for future motion gen-
eration We also compare TRAJEVAE with methods that
generate future poses from a set of past frames. We evalu-
ate the methods in two scenarios: when sampling K = 50
different poses, and when sampling only a single pose. We
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Method ADE ↓ FDE ↓

TRAJEVAE (k = 0) 0.529 0.779
TRAJEVAE (k = 1) 0.491 0.735
TRAJEVAE (k = 2) 0.477 0.710
TRAJEVAE (k = 3) 0.396 0.593
TRAJEVAE (k = 4) 0.345 0.522

DLow [70] 1.126 1.652

Table 3. Quantitative results for the Human3.6M dataset when
a single future pose sequence (K = 1) is generated. For our
method, we assume different scenarios when k = {0, 1, 2, 3, 4}
trajectories are provided. In this experiment, TRAJEVAE decodes
predicted means {µ̂}Tt=1 of trajectories. Best results are in bold.

Method APD ADE FDE MMADE MMFDE
↑ ↓ ↓ ↓ ↓

Base 1.220 0.481 0.695 0.640 0.811
+ Learnable prior 1.749 0.448 0.622 0.618 0.753
+ DCT 7.014 0.487 0.637 0.602 0.703
+ Masked future poses 6.803 0.472 0.623 0.594 0.695

Table 4. Influence of design decisions on obtained results for a sin-
gle given trajectory (a right foot). Best results are in bold. For the
ablation study with more trajectories, refer to the supplementary.

show results for TRAJEVAE when k = {0, 1, 2, 3, 4} tra-
jectories are present in the input. Results are summarized in
Tab. 2 for K = 50 and Tab. 3 for K = 1. When K = 50,
while working on an initial pose only without a conditioning
trajectory, TRAJEVAE produces poses comparable in terms
of the accuracy to those generated by other approaches even
though it was not trained specifically for this task. When
we use k = 4 trajectories, the accuracy is better than for all
other baselines. Note that both DLow [70] and DSF [69]
were specifically trained to generate diverse samples while
TRAJEVAE implicitly provides high diversity by having a
more flexible, learnable prior distribution. DLow is addi-
tionally constrained to always generate K poses and cannot
be extended to more samples.

When K = 1, our method is capable of creating accu-
rate pose sequences for a single sample. To adapt DLow to
this scenario, we take the first pose from all its K generated
poses. DLow’s much lower accuracy compared to experi-
ments with K = 50 is caused by its diverse outputs, many
of which do no match the ground truth. Since DLow does
not allow for controlling the trade-off between diversity and
accuracy, it is unable to generate an accurate pose sequence
reliably if only a single sample is generated. In compari-
son, our method is capable of controlling that trade-off and
thus producing accurate results even if only a single output
sample is generated.
Ablation study Finally, we perform an ablation study of
our design decisions: making the prior distribution learn-
able, using the Discrete Cosine Transform in the latent
space, and masking future poses with the mask 1−M. We
show obtained results in Tab. 4.

The transformer-like architecture already obtains re-
markable results. However, these can be improved by using
learnable prior. While DCT reduces the accuracy, we found
it to be a necessary component to obtain diverse samples.

We also found it beneficial to apply additional regular-
ization technique by masking future poses with the mask
1 −M. By masking the poses, the network has to learn
to encode more information from poses and stops to rely
entirely on the prior distribution.

5. Conclusions and limitations

We introduced the notion of trajectory-conditioned pose
generation as a pose completion problem. It allowed us
to define TRAJEVAE — a method for controllable and
stochastic human animation generation. We showed that
the paradigm of structured dropping of joints during train-
ing, creates a model that can generate realistic poses that
follow an arbitrary number of trajectories. Obtained results
show the applicability of our method in designing realistic
human animations. While our approach trivially general-
izes to other data representations, applying it to full-body
parametric models, such as SMPL [50, 74], is of high im-
portance.

We identify two limitations of our approach. Firstly, gen-
erated poses do not follow the trajectories exactly. While we
could resort to a cGAN [19] model as a possible solution for
its unprecedented quality of generated samples [34], the ap-
plication of GANs to structured time series data is still a
challenge.

Secondly, when the initial pose is ambiguous about what
action it represents, TRAJEVAE tends to stretch bones
when we input only a single or none trajectories. Apply-
ing exponential maps [53] constrains bone lengths but this
would limit our method to only work with skeleton struc-
tures that have a clearly defined kinematic chain.

6. Ethical concerns

We do not identify immediate abuses of our approach
in real world applications. TRAJEVAE can be used to re-
animate characters, however their skeletons still need to be
manually defined. We regard the recent progress in neural
radiance field [48] methods and their applications for hu-
man reposing [58] as a potential ethical concert.
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TRAJEVAE: Controllable Human Motion Generation from Trajectories

Supplementary Material

A. Adapting MoGlow
As mentioned in the main text, MoGlow [24] conditions

predicted poses on a control signal. This signal represents
relative and rotational velocities on the ground plane. More-
over, the authors use the exponential map representation but
at the same time claim that MoGlow can be used for any
other well-known skeleton representation. We identify the
following changes to the original implementation that en-
abled us to use MoGlow in our framework:

1. We change the exponential map representation to the
3D coordinates of J joints.

2. We replace the control signal represented as veloci-
ties into trajectories defined as poses with some of the
joints set to 0. This increases the input signal’s dimen-
sionality from 3T to 3JT for T time steps. However,
it has a negligible effect on the performance.

3. We also removed regularization techniques such as
gradient norm clipping and gradient value clipping and
disabled data normalization. These techniques deteri-
orate the learning, and the network does not converge
in our scenario.

4. For consistency with other methods, we use the Adam
optimizer [36] with the same learning rate regime.

We left the rest of the implementation unchanged.

B. Implementation details
TRAJEVAE MLPs applied in the input and in the CVAE’s
bottleneck output latent codes of size 256. Therefore, vec-
tors Ĥ and H̃ processed by self-attention layers have a di-
mensionality 512. The initial layer in the decoder D pro-
cesses {[wt;w0]} and is defined as a function: f : R768 →
R512. The final layers outputs vectors of size 3J .

All MLPs responsible for encoding poses and trajec-
tories mentioned in the main text consists of the fol-
lowing structure: Linear→ Layer Normalization
→ Leaky ReLU(α=0.1) → Linear → Layer
Normalization → Leaky ReLU(α=0.1), where α
is a scale of the negative slope of the function. The ini-
tial MLP in the decoder D has the structure Linear →
Layer Normalization → Leaky ReLU(α=0.1)
→ Linear.

The CVAE baseline operate with the same dimensional-
ities as TRAJEVAE. We implement them in the same way
as defined in [70]. The model uses GRU network to encode

the temporal data. The recurrent decoder also receives a
coordinate of the trajectory yt in the time step t.

We additionally apply dropout = 0.1 to self-attention
layers as described in [62].

C. Same pose, different trajectories
We perform an additional experiment that confirms the

generality of our approach. We show results for a scenario
when we use different trajectories for the same initial pose.
As expected, the generated poses follow different trajec-
tories even though such combinations do not occur in the
dataset.
Preparing the data To maintain plausibility that a partic-
ular initial pose is physically capable of following a condi-
tioning trajectory, we pair each initial pose x0 in the dataset
with all trajectories where the distance between x0 and co-
ordinates of the trajectory in a time step t = 0 is below
ε0 = 0.01. Since obtaining the ground truth sequence X in
such a case is not possible, we assume that the sequence X
corresponding to a given trajectory is a sufficient approxi-
mation of the expected sequence. We evaluate TRAJEVAE
as previously using APD, ADE, FDE. We omit MMADE
and MMFDE for its exponential computational complexity
that this scenario creates.
Results We present results in Tab. 5. Even though these
trajectories do not come from the same sequence as the ini-
tial poses, TRAJEVAE generates a sequence that follows
the trajectory. The decrease in accuracy (ADE) between
k = 2 and k = 3 is caused by adding a trajectory that corre-
sponds to the right hand, while k < 2 we add only trajecto-
ries regarding feet. While feet commonly behave similarly
throughout the animation, hands have a significantly differ-
ent motion from other joints.

The value k = 0 corresponds to no trajectories, and
therefore we omit it in the Tab. 5. Refer to supplementary
files to find animations generated for initial poses with dif-
ferent trajectories.

D. Extended ablation study
In experiments, we provide results for an ablation study

when only a trajectory for the right foot is provided. We
additionally show in Tab. 6 results when we input no trajec-
tories, or progressively add trajectories of the right foot, left
foot, right hand, and left hand. The extended results show
that our design decisions consistently affect scenarios when
we vary the number of the input trajectories.
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k APD ADE FDE

1 5.373 0.370 0.476
2 5.400 0.362 0.472
3 5.096 0.375 0.491
4 4.175 0.332 0.433

Table 5. Quantitative results for the Human3.6M dataset when
K = 50 samples are generated for the scenario where we use
different trajectories from the whole dataset for the same initial
pose. We assume different situations that k = {1, 2, 3, 4} trajec-
tories are provided.

Method k
APD ADE FDE MMADE MMFDE
↑ ↓ ↓ ↓ ↓

Base

0

1.237 0.525 0.749 0.634 0.801
+ Learnable prior 1.860 0.502 0.694 0.611 0.740
+ DCT 9.483 0.560 0.742 0.634 0.762
+ Masked future poses 8.936 0.539 0.724 0.616 0.748

Base

1

1.220 0.481 0.695 0.640 0.811
+ Learnable prior 1.749 0.448 0.622 0.618 0.753
+ DCT 7.014 0.487 0.637 0.602 0.703
+ Masked future poses 6.803 0.472 0.623 0.594 0.695

Base

2

1.217 0.466 0.672 0.642 0.812
+ Learnable prior 1.719 0.418 0.577 0.616 0.750
+ DCT 6.561 0.465 0.604 0.594 0.688
+ Masked future poses 6.286 0.448 0.587 0.587 0.681

Base

3

1.248 0.376 0.549 0.639 0.802
+ Learnable prior 1.725 0.327 0.449 0.632 0.767
+ DCT 5.367 0.389 0.503 0.590 0.681
+ Masked future poses 4.861 0.361 0.474 0.585 0.674

Base

4

1.261 0.339 0.498 0.641 0.805
+ Learnable prior 1.720 0.281 0.385 0.646 0.783
+ DCT 4.524 0.338 0.443 0.595 0.692
+ Masked future poses 3.857 0.312 0.412 0.594 0.689

Table 6. Influence of design decisions on obtained results for
k = {0, 1, 2, 3, 4} trajectories. These trajectories refer to scenar-
ios when we use no trajectories and then add progressively trajec-
tories for the right foot, left foot, right hand, and left hand. The
best results are in bold.
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